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Abstract 
 
We follow theoretically the motion of the sodium atoms in vapor state under the 
influence of a laser mode in (1 + 1) D, which is achieved via different optical 
filters. In the Dirac interaction representation, the equations of motion are 
represented via the Bloch form together with the Pauli operators to find the 
elements of the density matrix of the system. The immergence of the principle of 
coherence in varying the angles of the laser mode permits the evaluation of the 
average force affecting the atoms acceleration or deceleration; and hence the 
corresponding velocities and temperatures are investigated. The atomic vapor is 
introduced in a region occupied by a heat bath presented by the laser field, such 
that the state of the atomic vapor is unstable inside the system due to the loss or 
gain of its kinetic energy to or from the laser field. This instability is studied 
through finding the eigenvalues of the system's entropy. Resorting to the 
assumption of Boten, Kazantsev and Pusep, who issued a coupling between the 
mean numbers of photons in terms of time, allows the evaluation of the rate of 
entropy production of the system under study. A set of figures illustrating the 
dynamics of the problem is presented.  
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Spontaneous emission; Irreversible statistical mechanics. 
PACs: 32.80.Qk Coherent control of atomic interactions with photons; 
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 Introduction  
 
The prediction of the mechanical effects of laser light on the neutral atoms dates back 
to Ashkin [1] and kazantsev [2]. More specifically, in recent years atomic beams have 
been laser-cooled and trapped, obtaining a narrowing of atomic lines and slowing 
down of atomic velocity. In the case of a plane monochromatic laser – traveling wave 
in the same direction as a two level atomic beam, Kazantsev [2] solved the equation 
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of motion for the atomic density matrix with a semi classical Hamiltonian, and the 
field wave vector is taken in complex form that the resulting force lies in the complex 
plane, its real part takes the direction of the atomic beam and accelerates them, it was 
termed by the spontaneous radiation pressure force following Ashkin [1]. The 
imaginary part or the transverse component is the gradient or the dipole force which is 
in direct proportionality with the field intensity. Interaction representation has a long 
history in the study of atom dynamics in laser waves; the Dirac representation of a 
two-level atom and a nearly resonant light field had received a theoretical tackling in 
[4].  A work conducted by Letokhov and  Minogin was based on the semi classical 
approach, such as in [5], who presented a quantum treatment based on the 
Schrödinger perception of the motion of atoms in a resonant light field. The 
interaction Hamiltonian is taken in the dipole and rotating wave approximations. 
Coherent states were first studied by Schrödinger in 1926, and were rediscovered by 
Klauder , Glauber , and Sudarshan  at the beginning of the 1960's, they described the 
specific role of coherent states played in quantum radiation fields [6]. In reference [7], 
the acceleration of atoms by laser using the Landau-Lifshitz (LL) equation was a 
discussed. Since laser cooling decreases the temperature of a sample of atoms, there is 
less disorder and therefore less entropy. This seems to conflict with the second law 
of thermodynamics, which requires the entropy of a closed system to always increase 
with time. The explanation lies in the consideration of the fact that in laser cooling, 
the atoms do not form a closed system. Instead, there is always a flow of laser light 
with low entropy into the system and fluorescence with high entropy out of it. The 
decrease of entropy of the atoms is accompanied by a much larger increase in entropy 
of the light field. Entropy considerations for a laser beam are far from trivial, but 
recently it has been shown that the entropy lost by the atoms is many orders of 
magnitude smaller than the entropy gained by the light field.[8] 
The concept of entropy plays an important role in our understanding of complex 
physical systems . The  study of the entropy in quantum systems was begun by von 
Neumann in 1932. The quantum entropy for a density operator was defined by von 
Neumann about 20 years before the Shannon entropy appeared. The quantum 
dynamical entropy (QDE) was studied in [9,10]. In 1976 , Pusep has investigated the 
quantum features of the acceleration of an atom in the homogenous field of a traveling 
monochromatic wave. The atoms are accelerated as a result of absorption of photons 
of the traveling wave and of the spontaneous emission of a spherical wave. The 
improvement of the methodology utilized by Kazantsev[11], consists of the 
replacement of the classical description of the translational motion of the atom by a 
consistent quantum mechanical description.  
Indeed, upon absorbing a photon from the light flux and spontaneously emitting a 
spherical wave, the atoms acquires the momentum hk  in the direction of propagation 
of the wave within a cycle of duration 1  . Despite that the spherical wave correspond 

to the classical limit, from the quantum standpoint each elementary event of photon 
emission bears away a momentum equals in magnitude to hk  in an arbitrary 

direction. 
When the photon number n is characterized by a Poisson distribution , Botin and 
kazanstev [2] and just after them Pusep [3] suggested that there is a linear relationship 
between the mean number of scattered photons and the time of laser-atom interaction 
in the form if the spontaneous emission is strong, while   if the 

the spontaneous emission is weak, where  is the life time of the atomic levels. 

Since for 1n    the distribution of n is well approximated by a Gaussian, while the 
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distribution to which emission of photons gives rise in the case 1n   is also 
Gaussian. In 2016, Andrede et-al [12] studied the entropy of a quantized field in 
interaction with a two- level atom in a pure state when the field is initially in a 
mixture of two number states. In this paper,  a theoretical study discusses the effects 
on a neutral atomic vapor by a plane of monochromatic laser traveling wave in 
different coherent angles. The pressure force, the velocity and temperature of atoms 
estimated.  
 

The physical problem 
 
We consider a plane traveling wave, a single laser mode, of frequency   as 

propagating in the z-direction with wave vector ( zK k e 
 

), while a beam of vapor 

of Na atoms moves in the ( ve ) z-direction. The role of the coherent state is played 
by introducing suitable optical filters inducing different angles  to affect the state of 

motion of atoms making either the acceleration or deceleration, this is followed by a 
study which discusses the statistical nature of the quantum system via entropy and 
entropy production. 
The Two-Level Model is employed to represent our problem. An atom with only two 
energy eigenvalues are described as a two-dimensional states space spanning between 
the two energy eigenstates  and . The two states constitute a complete 

orthonormal system [13]. The corresponding energy eigenvalues are  and . The 

energy levels of the atom is in a coordinate frame rotating with frequency 0 . 

We use a type of laser with frequency approaching to the transition frequency  0  

of sodium atoms.    )(,~ 2100   ; the atomic levels  are 

coupled by the light induced transitions, are separated in coordinate systems by a 

difference 0,        

The real value of the density matrix formalism for atom-light interactions is its ability 
to deal with open systems. The reason is that; the closed system of atom plus laser 
light that can be described by Schrödinger wave functions and is thus in a pure state, 
undergoes evolution to a ‘‘mixed’’ state by virtue of the spontaneous emission.[8] 
 

The interaction representation  
 
The interaction Hamiltonian is taken in the dipole and rotating wave approximations 
in the framework of the interaction representation[14]; 

            † †ˆ ˆ ˆˆ ˆ{ }i i
IH i g ae a e                                                                      (1) 

Where: 

   0. , 0t K R t kz           
 

,  

where 0  for the atoms and  for the field , zR z e
 

is the atom position vector;  

 g is Rabi frequency. 

 { †ˆ ˆ2 1 , 1 2   } are the transition operators for atoms.  

 †ˆ ˆ,a a are the boson operators. 

We present the equation of motion of the matrix elements of the density matrix 

operator as ˆ ( )I t . The interaction of the two-level atom with the quantized electric 

field of an electromagnetic wave is defined by the Bloch equations: 
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0ˆ , ( ) , , 1, 2

ij

I I ij ij ij

d i
i H j i j

dt


        

                             (2) 

Where: 

 11 22 2    , are the spontaneous decay rates for the two metastable 

levels. 

 12 21     , are the rates of relaxation of the off- diagonal matrix 

element. 

 At t=0, we assume that the initial populations of the lower and upper 
states are  

            0 0 0 0
11 22 12 211, 0and       . 

Following [12] from (1) and (2), using the initial conditions for i=j=1; the equations 

of motion are respectively (note that:
d

dt
  ) 

             †
11 11 21 12

ˆ ˆ2 2 { }i ig a e ae                                                     (3.a) 

Similarly , for j =i =2      

            †
22 22 12 21

ˆ ˆ2 { }i ig a e a e                                                           (3.b) 

for j =2, i =1  

             † †
12 12 22 11

ˆ ˆ{ } ig a a e                                                                (3.c) 

for j =1 ,i =2  

             21 21 22 11
ˆ ˆ{ } ig a a e            .                                                    (3.d) 

The density matrix satisfies the conditions for mixed state. 

                                     † 2
12 211 , ,I I ITr        . 

Resorting to the coherent state   of the laser mode, to obtain the value of density 

matrix elements according to which is defined as an eigenstate of the amplitude operator, 

one of the annihilation operators ˆ{ }a , with eigenvalues { }  [15]. The operators  ˆ{ }a  are 

non-Hermitian , and the phase angle  describes the wave aspect of the coherent state 
ie C    , where as    is a complex number, which corresponds to the complex 

wave amplitude in classical optics. Thus the coherent states are wave-like states of the 
electromagnetic oscillators. The coherence angles   are the phase of the 

electromagnetic field (laser) which affects the atoms. 
Although the coherent states are not orthogonal, it is possible to expand them in terms 
of a complete set of states. The completeness relation for the coherent states [16]; and 
the following  properties hold true: 

   21
1d   


 , † *ˆ ˆ, ,ij ij a a             , 1   (*).                                  

so that applying (*) to both sides of equations (3) to get  

         *
11 21 1211 2 2 { }i ig e e                                                            (4.a) 

         *
22 21 1222 2 { }i ig e e                                                                (4.b) 

         *
12 22 1112 { } ig e                                                                           (4.c) 

         21 22 1121 { } ig e                                                                           (4.d) 
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Pauli operators  
 
The Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and 
unitary [16]. 

 1 12 21

0 1 0 1 0 0
ˆ ˆˆ

1 0 0 0 1 0
  

     
         

     
                                                              (5.a) 

2 12 21

0 0 0 0 0 0 0 1
ˆ ˆˆ ( )

0 0 0 0 1 0 0 0

i i
i i i

i i
  

          
                

         
                   (5.b) 

 3 11 22

1 0 1 0 0 0
ˆ ˆˆ

0 1 0 0 0 1
  

     
              

                                                           (5.c) 

And                                        

                           11 22
ˆˆ ˆ 1                                                                                      (5.d) 

 The determinants and traces of the Pauli matrices are: 

                     det 1 , 0i iTr                                                                             (6)  
 The Pauli vector is defined by 

                        ˆ ˆ ˆx y zx y z                                                                                 (7)  
Then using coherent state  with equations (5.1), (5.2), (5.3) and (5.4)  1 12 21( )x                                                                    (8.a)  

                  2 21 12( )y i                                                                    (8.b) 

                  3 11 22( )z                                                                    (8.c) 

                      11 221 ( )                                                                 (8.d) 

 
 
Where   are Hermitian operators. 

And we have also, if we differentiate and take the value with coherent state: 

                                12 21( )x                                                                   (9.a) 

                                  21 12( )y i                                                                   (9.b) 

                                  11 22( )z                                                                   (9.c) 

                                     11 220 ( )                                                                  (9.d) 

 
Using (4.1), (4.2), (4.3) and (4.4) we have: 

   2 cos( )x x zg                                                                               (10.a) 

   2 ( )y y zg Sin                                                                              (10.b) 

   2 2 cos( ) 2 sin( )z z x yg g                                              (10.c) 

The general form of these equations (8.1), (8.2), (8.3), and (8.4) is 

                                                 M Y                                                           (10.d) 

Where the matrix representation is 
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.

0 0 2 sin( )

, 0 , 0 2 cos( ) .

2 2 cos( ) 2 sin( ) 2

x

y

z

g i

Y M g i

g g

    

     

        

     
            
              

 
The steady state solution is taken into consideration such that equation (10.d) will be: 

0 ,    implies 1M Y    
3 2

2 2 2 2

1 2 2 2 2

2

2 4 0

2 4 sin ( ) 4 cos( ) sin( ) 2 cos( )
1

4 cos ( ) 2 4 cos ( ) 2 sin( )

2 cos( ) 2 sin( )

M g n

g n g n g

M i g n g n g
M

g g

 

          

        

        



   

     
 

      
    

 Then Pauli operators in terms of the coherent states are: 

      2
12 21

1
4 cos( )x g

M
      


                                  ,                 (11.a) 

      2
12 21

1
( 4 sin( )) ( )y g i

M
      


                     .                           (11.b) 

     3
11 22

1
(2 )z

M
   


                          ,                          (11.c) 

provided that 

                                                 11 221        .                                             (11.d) 

Four cases lie in the scope of this study:- 
The first: the traveling wave in the opposite direction of sodium atoms with 
detuning 0  . 
The second: the traveling wave in the same direction of sodium atoms with detuning 

0  . 
The third: the traveling wave in the opposite direction of sodium atoms with 
detuning 0   . 
 The forth: the traveling wave in the same direction of sodium atoms with detuning 

0  . 
  
The density matrix elements under the effect of the coherence state are  

  11

1 0.5

1

G n

G n






 , 22

0.5

1

G n

G n
 


 , 

*

12
(1 )

ig e

G n











 , 21
(1 )

ig e

G n








 .         (12) 

    Where 

2

2
g

G


 
  

 
  is the saturation parameter.                                                                                   

 
The investigation of the problem in terms of the continuous 
photon numbers  
 
Recalling that, spontaneous emission causes the state of the system to evolve from a 
pure state into a mixed state and so the density matrix is needed to describe it. 
Spontaneous emission is an essential ingredient for the dissipative nature of the 
optical forces.[8] 
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Thus the stimulated transitions in the field of a running wave do not contribute to the 
mean force of the light pressure.  
We shall continue our investigations in two limiting cases of rapid and slow 
spontaneous emission: 

 
The first case 
 

 The traveling wave propagates in the ( ve ) z-direction ( zK k e 
 

) , the density 

matrix elements have the same values with  1 t kz     ; 0  . 

 
Using the completeness relation in ( * ); 
The density matrix elements therefore are: 

 
†

11

ˆ ˆ1 0.5
ˆ

1

G a a

G n






 , 

†

22

ˆ ˆ0.5
ˆ

1

G a a

G n
 


  ,  

1†

12

ˆ
ˆ

(1 )

ig a e

G n











  ,   
1

21

ˆ
ˆ

(1 )

ig a e

G n









 .     (13) 

The Force Acting On Atoms 
 
We will use an Electromagnetic wave (laser), where the force acting on a two-level 
atom in a resonance light field, it can be estimated as follows: in the field of a strong 
running wave, the atom absorbs a photon from a light beam and acquire the 
momentum  of photon [16].  

The Hamiltonian in matrix representation is 

                       
1

1
1†

ˆ0ˆ ,
ˆ 0

i

I i

i g a e
H t kz

i g a e








 
    

 




 

The relation of the optical force acting on atoms: [17] 

                                     { }I

H H
F Tr

z z


 
   

 
 

                      
2

1 12 22 †1
ˆ ˆ{(1 ) }

4
i iF k G i a e a e        .                                        (14) 

The value of the force with respect to the coherent state  while using the relation 

(**) and the expansion of the exponential function is: 
When  ,     

 1 F F k W     ; 1 1cos 2( )
1

Gn
W

G n
  


          .                                  (15.a)  

The force is acting along the longitudinal direction and has real values, n is the mean 
number of photons. 

 
 The dimensionless force 

 
We can divide both sides of equation (14.1) by k  , to get its dimensionless form;  

                                      1f W                                                                            (15.b)                                  

Where  is the light Pressure force acting along the negative z-direction, which causes 

a deceleration or accelerating effects on the atoms. 
As is well-known , the probability of emission of a photon in a given direction is 
determined by the intensity of the spherical wave emitted by the quantum nature of 
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the emission leads to fluctuation of the light-pressure force about the mean value of 
W1. 
 
Velocity of atoms after interaction 
 
We shall begin by integrating the force in  (15.a) 

                                               
F dv

A
M dt

   

1

1

1

, cos 2( )
1

, cos 2( )
(1 )

cos 2( ) , ,
(1 )

r
r r

k G n
Since F MA

G n

dv k G n
Then

dt M G n

v G ndv k
v v Recoil velocity

dt G n M


 


 


 

   


   


    








 

0 0

1 1cos 2( ) ,
(1 )

v t

r

v t

v G n
dv dt t kz

G n


       

      

0 1 0( ) {sin 2( ) sin 2( )}
2 (1 )

rv G n
v t v

G n
       

 
                                            (16.a) 

 here    ,           0 0 , 



    . 

 The relative velocity difference: 

          0
1 0

0 0

( )
{sin 2( ) sin 2( )}

2 (1 )
rv t v v G n

V
v v G n

   


     
 

                   (16.b) 

The temperature of atoms 

In a one dimensional space the kinetic energy 21

2
kE Mv   in the classical mechanics, 

is equivalent to 
1

2
k BE k T  in thermodynamics, so that in the (-ve) z-direction the 

temperature of atoms will be   

2 2
0 1 0( ) { {sin 2( ) sin 2( )}

2 (1 )
r

B B

v G nM M
T t v v

k k G n
        

 
                      (17.a) 

 The relative temperature difference: 

2
1 02

0 0

( )
{1 {sin 2( ) sin 2( )}

2 (1 )
( )

r

B

v G nT t
T

Mv v G n

k

        
 

       .                  (17.b) 

See table (1) , and Fig. (1) . 
                                                                           

The second case 
 

 The traveling wave propagates in the ( ve ) z-direction ( zK k e
 

). The  density 

matrix elements have the same form but with  the new angle 2 t kz    : 0  .  

  
†

11

ˆ ˆ1 0.5
ˆ

1

G a a

G n






 ,  

†

22

ˆ ˆ0.5
ˆ

1

G a a

G n
 


,  

2†

12

ˆ
ˆ

(1 )

ig a e

G n











  ,  
2

21

ˆ
ˆ

(1 )

ig a e

G n









      (18) 
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The force acting on atoms 
 
The Hamiltonian in matrix representation is 

                          
2

2
2†

ˆ0ˆ ,
ˆ 0

i

I i

i g a e
H t kz

i g a e








 
    

 




 

the induced light pressure force 

                2 F k W   ,    2 2cos 2( )
1

Gn
W

G n
  


                                            (19.a)  

in dimensionless forme 
                                    2f W  ,                                                                              (19.b) 

acting along positive z-direction, which causes a deceleration or acceleration effect on 
the atoms for chosen different phase angles. 

 
The velocity of atoms; 

 

2

2

, cos 2( )
(1 )

cos 2( ) , ,
(1 )

r
r r

dv k G n
when

dt M G n

v G ndv k
v v Recoil velocity

dt G n M


 


 

 


   





 

0 0

2 2cos 2( ) ,
(1 )

v t

r

v t

v G n
dv dt t kz

G n


      

   

0 2 0( ) {sin 2( ) sin 2( )}
2 (1 )

rv G n
v t v

G n
       

 
                                             (20.a) 

 The relative velocity difference: 

2 0

0

{sin 2( ) sin 2( )}
2 (1 )

rv G n
V

v G n
      

 
                                                   (20.b) 

Since 2 0 02 ,Z          

  

The temperature of atoms 
Similar to the first case: 

2 2
0 2 0{ {sin 2( ) sin 2( )}

2 (1 )
r

B B

v G nM M
T v v

k k G n
        

 
                            (21.a) 

The relative temperature difference: 

20
2 02

0 0

( )
{ {sin 2( ) sin 2( )}

2 (1 )
( )

r

B

T t T v G n
T

Mv v G n

k

   


    
 

                              (21.b) 

See table (1) and  Fig. (2) . 
 

The investigation of the problem in terms of time 
 
The idea of coupling between the mean number of photons and time was introduced 
by Botin and Kasantsev [2] and Pusep [3]; they adopted that the distribution of the 
absorbed photons n is well approximated as Poisson or Gaussian, according to 
whether the spontaneous emission is slow or rapid. In the first, the emitted mean 
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photon numbers n gives rise also to be Gaussian, it is linearly proportional to time 
such as 0.5 ,n t and t    , it is known also as strong field. For rapid spontaneous 

emission n is Gaussian and the mean photon numbers n is Gaussian as well, where 
2n G , it is known also as weak field 1G  . Here t is the interaction time, while 

for slow spontaneous emission . 

 
First case: 
 
 The traveling wave in (-ve) z-direction and , 0  .The density matrix elements are: 

 
†

11

ˆ ˆ1 0.5
ˆ

1 0.5

G a a

G








 ,

†

22

ˆ ˆ0.5
ˆ

1 0.5

G a a

G






, 

1†

12

ˆ
ˆ

(1 0.5 )

ig a e

G




 






 , 
1

21

ˆ
ˆ

(1 0.5 )

ig a e

G




 




  (22)                                                                     

Force acting on atoms 
 

Force using photons number in terms of time representation with strong field   

                                    1cos 2( )
2

G
f

G


 


  


                                                 (23.a) 

Velocity of atoms after interaction 

 
Velocity using photons number in terms of time representation with strong field   

          
0

1

0

cos 2( )
(2 )

rv G
V d

v G






  


  

                                                         (23.b) 

Temperature of atoms 
 

Temperature using photons number in terms of time representation with strong field   

                           
0

2
1

0

{1 cos 2( ) }
(2 )

rv G
T d

v G






  


  

                                  (23.c)                    

Second case:  
 
 The traveling wave in (+ve) z-direction and , 0  . The density matrix elements are: 

†

11

ˆ ˆ1 0.5
ˆ

1 0.5

G a a

G








 ,

†

22

ˆ ˆ0.5
ˆ

1 0.5

G a a

G






 ,

2†

12

ˆ
ˆ

(1 0.5 )

ig a e

G




 






 , 
2

21

ˆ
ˆ

(1 0.5 )

ig a e

G




 




  (24)                                                                                   

  
 Force acting on atoms 

 
Force using photons number in terms of time representation with strong field   

                                     2cos 2( )
2

G
f

G


 


 


                                                   (25.a) 

Velocity of atoms after interaction 
 
Velocity using photons number in terms of time representation with strong field   

        
0

2

0

cos 2( )
(2 )

rv G
V d

v G






  


 

                                                               (25.b) 
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Temperature of atoms 
 

Temperature using photons number in terms of time representation with strong field   

         
0

2
2

0

{1 cos 2( ) }
(2 )

rv G
T d

v G






  


  

                                                     (25.c)     

See table (2) and Fig. (3) and (4). 
 

A. Rapid spontaneous emission (weak field g


<<1) 

First case:  
 the traveling wave in (- ve) z-direction and , 0  . The density matrix elements are: 

  
†

11 2

ˆ ˆ1 0.5
ˆ

1 2

G a a

G








, 

†

22 2

ˆ ˆ0.5
ˆ

1 2

G a a

G






, 

1†

12 2

ˆ
ˆ

(1 2 )

ig a e

G




 






 , 
1

21 2

ˆ
ˆ

(1 2 )

ig a e

G




 




    (26)                                                                                       

Force acting on atoms 
 

We express the force using photons number in terms of time representation with weak 
field  

                          
2

2

2
cos 2( 1 )

1 2

G
f

G


 


  


                                                       (27.a) 

Velocity of atoms after interaction 
 

Velocity using photons number in terms of time representation with weak field  

           
0

2

2
0

2
cos 2( 1 )

(1 2 )
rv G

V d
v G






  


  

                                                 (27.b) 

Temperature of atoms 
  Temperature using photons number in terms of time representation with weak field 

        
0

2
2

2
0

2
{1 cos 2( 1 ) }

(1 2 )
rv G

T d
v G






  


  

                                             (29.c)                     

Second case : 
 the traveling wave in (+ve) z-direction and , 0  .The density matrix elements are: 

 
†

11 2

ˆ ˆ1 0.5
ˆ

1 2

G a a

G








  , 

†

22 2

ˆ ˆ0.5
ˆ

1 2

G a a

G






 , 

2†

12 2

ˆ
ˆ

(1 2 )

ig a e

G




 






 , 
2

21 2

ˆ
ˆ

(1 2 )

ig a e

G




 




  (30)                                                                                  

 
Force acting on atoms 

 
Force using photons number in terms of time representation with weak field   

       
2

22

2
cos 2( )

1 2

G
f

G


 


 


                                                                              (31.a) 

Velocity of atoms after interaction 
 

Velocity using photons number in terms of time representation with weak field  

0

2

22
0

2
cos 2( )

(1 2 )
rv G

V d
v G






  


 

                                                                (31.b) 
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Temperature of atoms 
 
Temperature using photons number in terms of time representation with weak field   

   
0

2
2

2
0

2
{1 cos 2( 2 ) }

(1 2 )
rv G

T d
v G






  


  

                                                  (31.c) 

See table (3) , and Fig. (5) and (6) 

 

Irreversible statistical dynamics of the problem 
 
Entropy of the system 
 
The most natural measure of the uncertainty of the quantum- mechanical state is the 
entropy. The quantum Mechanical Entropy due to Von-Neumann reads [18] 
                           ˆ 2 2

ˆ ˆ ˆ{ ln } ,B xS k Tr                                                            (32.a) 

Where  is the density operator of the quantum mechanical system with  is the 

Boltzmann's constant. The Von-Neumann entropy of a pure state is equal to zero. For 
Quantum mechanical mixture the Von-Neumann entropy is larger than zero. 
 By deriving the eigenvalues of density matrix [19] 

            ˆ 1 2 2
1

log { log log }
d

B l l B l
l

S k k      


                                    (32.b)
 

to identify an eigenvalues of the density matrix from the eigen equation 

11 12 2
11 22 12 21

21 22

0 0
  

     
  


     


. 

 
Using eqs. (10.1), (10.2), (10.3) and (10.4), we get: 

                                     1,2

1 21

2 2(1 )

G n

G n



 


                                                         (32.c) 

According to[20]  the stability of the system is described according to the eigenvalues 
in the form  

1 1 : 0 0a i b a and b      . 

So that the system behaves as a " unstable spiral " meaning that the atoms dissipate 
/acquires energy to/ from the laser field as a energy bath described by the variables 
mean photon numbers n . Therefore; 
                      ˆ 1 2 2{ log log }B lS k                                                           (32.d) 

The dimensionless entropy: 
Entropy has the dimension of Boltzmann constant, its dimensionless form will be; 

                                
ˆ

1 2 2{ log log }l

B

S
S

k

          .                                    (32.e) 

Here S is time independent, as a result the entropy production , could be calculated 

in either case of strong and weak fields. 
the illustrations are seen in Fig. (7) 
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B: For slow spontaneous emission (strong field): 
 
Entropy of the system 
 
The eigenvalues in strong field are       

                              1,2

11

2 (2 )

G

G







 


                                                                  (33.a) 

Then ,dimensionless entropy in strong field                          

                             1 2 2{ log log }str lS       , 1,2 1,2 ( )t                               (33.b) 

 
Entropy production 
Resorting to Kasantsev and Pusep who adopted the notion of strong and weak fields, 
which permit to investigate the entropy production. 
In the conventional expression of the field in terms of the photon numbers, S is 
independent of time , as a result the entropy production could not be evaluated, while 
at strong and weak fields, the eigenvalues depend on time, therefore     

                             st st

d
S

d



                                                                                (34.a) 

2

1 1
( 2 0.5 ) 0.5 (2 0.5 ) 0.5

(2 ) (2 )

1 (2 )
st

G G
G G Log G Log

G G

G G

 
 

 


 

 
     

 


 

    
    
          (34.b)  

See Fig.(8). 

 
For strong spontaneous emission (weak field) : 
 
Entropy of the system 
 
The eigenvalues in weak field is ;      

                              
2

1,2 2

1 21

2 2(1 2 )

G

G







 


                                                               (35.a) 

Then , dimensionless entropy in strong field is;                         

                              1 2 2{ log log }w lS                                                           (35.b) 

Here S is time dependent, as a result the entropy production = , could be 

calculated.   

Entropy production 

                         w w

d
S

d





                                                                                  (36.a) 
2 2

2 2 2

2 2

2 2 2

1 2 1 2
( 1.5 ) 0.5 (1.5 ) 0.5

(2 4 ) (2 4 )

1 2 (1 2 )
w

G G
G G Log G Log

G G

G G

 
 

 


 

 
     

 


 

    
    
         ,(36.b)

 

 
See Fig.(9) 
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Table (1) 
 

 

The first case 
the traveling wave in (-ve) z-direction and , 0   

Behavior   
1  Behavior   

1  

6
  

3
  

2
  2

3
  

3
  

6
  2

3
  

3
  

A
cc

el
er

- 
A

ti
on

 

2
  

6
  D

ec
el

er
- 

at
io

n
 

5
6

  
3

  

The second case 
the traveling wave in (+ve) z-direction and , 0   

Behavior   
2  Behavior   

2  

2
  2

3
  

6
  

3
  

2
3

  
3

  
3

  
6

  

A
cc

el
er

- 
A

ti
o

n
 

5
6

  
6

  D
ec

el
er

- 
at

io
n

 
2

  
6

  

 
 

 
Table (2) : At strong field 

 

The first case 
Behavior   

1  Behavior   
1  

6
  

2
  

3
  5

6
  

2
  

6
  

2
  2

3
  

3
  

3
  2

3
  

2
  

A
cc

el
er

at
io

n
 

5
6

  5
6

  D
ec

el
er

at
io

n
 

5
6

  
3

  

The second case 
Behavior   

2  Behavior   
2  

3
  5

6
  

6
  

2
  

2
  2

3
  

2
  

6
  

2
3

  
2

  
3

  
3

  

A
cc

el
er

a
ti

on
 

5
6

  
3

  D
ec

el
er

a
ti

on
 

5
6

  5
6

  
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Table (3) : At weak field 
  

The first case 
Behavior   

1  Behavior   
1  

6
  

6
  

2
  2

3
  

2
  5

6
  

3
  

2
  

2
3

  2
3

  
2

  
3

  

A
cc

el
er

at
io

n
 

5
6

  
2

  D
ec

el
er

at
io

n
 

2
3

  
6

  

The second case 
Behavior   

2  Behavior   
2  

3
  5

6
  

6
  

2
  

2
  2

3
  

3
  

3
  

2
3

  
2

  
2

  
6

  

A
cc

el
er

at
io

n
 

5
6

  
3

  D
ec

el
er

at
io

n
 

5
6

  5
6

  

 
 
The first case: the traveling wave in (-ve) z-direction and , 0  . 

 
Acceleration                                                         Deceleration 
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Fig. (1) 
The second case: the traveling wave in (+ve) z-direction and , 0  . 
 
                       Acceleration                                                     Deceleration 

 
 

 

 

 

 

 

 

 

 

 
Fig.(2) 
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The first :  

0 , st zand K k e   
 

   

 
                 Deceleration                                                        Acceleration 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
                                                                Fig.(3) 
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The second :  0 ,    st zand K k e  
 

   

 
                 Deceleration                                                        Acceleration 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig.(4) 
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The first : 
 

0 , w zand K k e      

 
                 Deceleration                                                        Acceleration 
 

 

 

 

 
 

 

 

 
 

 

 

 
 

Fig.(5) 
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The second case : 0 , w zand K k e      

 
                 Deceleration                                                        Acceleration 
 

 

 

 

 
 

 

 

 
 

 

 

 
 

Fig.(6) 



 21

Entropy and entropy production of the system: 
 

 
 

Fig. (7) 
 
 

  
 
                                                             Fig. (8) 
 

 

 
 

Fig. (9) 
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Discussion and conclusion 
    
- We deal with the photon number taken as a continuous variable according to [21, 
22]. The study is conducted using sodium atoms vapor [23]. 
- Taking into consideration that the collision between atoms is neglected.  
- The steady state of the optical Bloch equations for the density matrix elements are 
evaluated, then the mean force with respect to the coherent state causes the 
acceleration and deceleration and also the change in detuning, taking in details the 
first two out of four cases: 

          1) , 0zK k e   
 

                     2)  , 0zK k e  
 

 

          3) , 0zK k e  
 

                       4)  , 0zK k e 
 

 

- The evolution in the behavior of atoms is investigated according to changing the 
angles of coherence through applying optical filters, playing a principal role in 
inducing deceleration or acceleration of atoms. 
It is kept in mind that, the atomic vapor is immersed in an energy bath presented by 
the laser field, such that the state the atomic vapor is unstable inside the system due to 
the loss or gain of energy caused by the deceleration or acceleration of atoms 
influenced by the change of coherence angles. 
The investigation of the problem according to Kazanstev and Pusep in terms of time 
reveals that in the case of: 
 
    a) Slow spontaneous emission (strong field):  
 The mean number of photons in the time representation is 0.5n  , where the field 

is strong and the saturation coefficient is taken such that 1G  . The proper choice of 

coherence angles also control the behavior of the atoms, which are shown in the table 
(3) and also in Figs. (3) and (4). 
 
 b) Rapid spontaneous emission (weak field):  
The mean number of photons was treated such that 2n G , where the field is weak 

i.e. 1G . The coherence angles also control the behavior of the atoms, which are 

shown in the table (4) and Figs. (5) and (6). 
When studying the state of the system by evaluating the entropy in the classical 
representation of the field, Fig. (7) explains that the system behaves as  “ unstable 
spiral ”.   
Throughout the investigation of the problem, in terms of mean photon numbers it is 
been found that: in the classical approach the mean number of photons is dealt with as 
a continuous quantity by letting it changes within the interval [0,20]. While in terms 
of time, comparing both slow and rapid spontaneous emission cases, regardless of the 
coherence angles; the entropy production behaves such that it suddenly increases with 
increasing G at the beginning of the time interval, then drops severely to zero during 
the rest of the duration approaching the state of equilibrium with the increase in 
entropy, where the energy is dissipated to the field, in agreement with the notion of 
open systems [8], As shown in Figs. (8) and (9). 
- This study is a revisiting and verification of the previous work in [4], which deserves 
a thorough revision and deeper insight into the evolution of the system under study. 
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